Evaluate the quadratic equation discriminant value with the help of a discriminant calculator for the specified coefficient.
The discriminant formula for the quadratic equation \(ax^2 + bx + c = 0\), where \( a ≠ 0 \), is \(b^2 – 4ac \).
The discriminant is also represented by the symbol \(Δ\).
\(∴ Δ = b^2 – 4ac \)
Make your calculations simple and easy using an online discriminant calculator from mathematics master to get your results with the snap of the hand.
Graphs of \( y = ax^2 + bx + c \)  Discriminant  Number of types and solutions 
Discriminant is negative  No xintercepts No Roots Two imaginary solutions 

Discriminant is zero  One xintercept One Root (a double root) One real solution 

Discriminant is positive  Two xintercepts Two Roots Two real solutions 
It is the root that leads to quadratic equations and defines the characteristics, types, and differences. The equation can differentiate between the following types of answers.
The value used to assess the types of solutions in incorporating the quadratic formula is known as the discriminant. It is the unique feature of quadratic equations coefficient that provides information regarding roots.
The discriminant differentiates between three types different types of quadratic equation solutions.
Case 1: If the discriminant D exceeds 0, we can take the square root and get two valid answers.
Consider a=2, b=5, c=3
\( =b^24ac \)
\(=(5)^24(2)(3) \)
\(=2524 \)
\(= 1\)
Case 2: There is only one real solution if the discriminant D equals 0, which may be found by taking the square root of 0.
Consider a=4, b=4, c=1
\( =b^24ac \)
\(=(4)^24(4)(1) \)
\(=1616 \)
\(= 0\)
Case 3: If the discriminant D is smaller than 0, we can get two complex solutions by taking the square root of a negative number.
Consider a=1, b=4, c=6
\( =b^24ac \)
\(=(4)^24(1)(6) \)
\(=1624 \)
\(= 8\)
Follow the instructions below to use the discriminant calculators.
What do the discriminants inform us about?
They give us the type of solutions like 1,2 or no solutions.
If the significance is more than zero what number of solutions are possible?
If the square is perfect solutions are two, otherwise there are two rational roots and two irrational roots.
What is the significance of discriminant value in a quadratic equation?
The discriminant value unveils the features of quadratic equation roots. The equation can have complex and real roots and this discriminant value helps in finding the right equation solution.
Fill out the form below with your query and we will get back to you in 24 hours.
Cartesian coordinates, sometimes called rectangular coordinates, are t...
Step into the math playground, where the wonders of numbers come to li...
When you discharge an arrow or throw a stone, it arcs into the air and...